PlumX Metrics
Embed PlumX Metrics

Surface morphology and optical properties of aluminosilicate glass manufactured by physical and chemical etching process

Korean Journal of Materials Research, ISSN: 1225-0562, Vol: 27, Issue: 9, Page: 501-506
2017
  • 1
    Citations
  • 0
    Usage
  • 1
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Surface morphology and optical properties such as transmittance and haze effect of glass etched by physical and chemical etching processes were investigated. The physical etching process was carried out by pen type sandblasting process with 15~20 μm dia. of AlO media; the chemical etching process was conducted using HF-based mixed etchant. Sandblasting was performed in terms of variables such as the distance of 8 cm between the gun nozzle and the glass substrate, the fixed air pressure of 0.5bar, and the constant speed control of the specimen stage. The chemical etching process was conducted with mixed etching solution prepared by combination of BHF (Buffered Hydrofluoric Acid), HCl, and distilled water. The morphology of the glass surface after sandblasting process displayed sharp collision vestiges with nonuniform shapes that could initiate fractures. The haze values of the sandblasted glass were quantitatively acceptable. However, based on visual observation, the desirable Anti-Glare effect was not achieved. On the other hand, irregularly shaped and sharp vestiges transformed into enlarged and smooth micro-spherical craters with the subsequent chemical etching process. The curvature of the spherical crater increased distinctly by 60 minutes and decreased gradually with increasing etching time. Further, the spherical craters with reduced curvature were uniformly distributed over the etched glass surface. The haze value increased sharply up to 55 % and the transmittance decreased by 90 % at 60 minutes of etching time. The ideal haze value range of 3~7% and transmittance value range of above 90 % were achieved in the period of 240 to 720 minutes of etching time for the selected concentration of the chemical etchant.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know