PlumX Metrics
Embed PlumX Metrics

Highly Ordered and Pinched Magnetic Fields in the Class 0 Protobinary System L1448 IRS 2

Astrophysical Journal, ISSN: 1538-4357, Vol: 879, Issue: 1
2019
  • 50
    Citations
  • 0
    Usage
  • 13
    Captures
  • 2
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    50
    • Citation Indexes
      50
  • Captures
    13
  • Mentions
    2
    • References
      2
      • Wikipedia
        2

Article Description

We have carried out polarimetric observations with the Atacama Large Millimeter/submillimeter Array toward the Class 0 protostellar system L1448 IRS 2, which is a protobinary embedded within a flattened, rotating structure, and for which a hint of a central disk has been suggested, but whose magnetic fields are aligned with the bipolar outflow on the cloud core scale. Our high-sensitivity and high-resolution (∼100 au) observations show a clear hourglass magnetic field morphology centered on the protostellar system, but the central pattern is consistent with a toroidal field indicative of a circumstellar disk; though, other interpretations are also possible, including field lines dragged by an equatorial accretion flow into a configuration parallel to the midplane. If a relatively large disk does exist, it would suggest that the magnetic braking catastrophe is averted in this system, not through a large misalignment between the magnetic and rotation axes, but rather through some other mechanisms, such as nonideal magnetohydrodynamic effects and/or turbulence. We have also found a relationship of decreasing polarization fractions with intensities and the various slopes of this relationship can be understood as multiple polarization mechanisms and/or depolarization from a changing field morphology. In addition, we found a prominent clumpy depolarization strip crossing the center perpendicular to the bipolar outflow. Moreover, a rough estimate of the magnetic field strength indicates that the field is strong enough to hinder formation of a rotationally supported disk, which is inconsistent with the feature of a central toroidal field. This also suggests that early disk formation can happen even in young stellar objects with a strong primordial magnetic field.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know