PlumX Metrics
Embed PlumX Metrics

A Fast Second-order Solver for Stiff Multifluid Dust and Gas Hydrodynamics

Astrophysical Journal, Supplement Series, ISSN: 0067-0049, Vol: 271, Issue: 1
2024
  • 2
    Citations
  • 0
    Usage
  • 4
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

We present MDIRK: a multifluid second-order diagonally implicit Runge-Kutta method to study momentum transfer between gas and an arbitrary number (N) of dust species. The method integrates the equations of hydrodynamics with an implicit-explicit scheme and solves the stiff source term in the momentum equation with a diagonally implicit, asymptotically stable Runge-Kutta method (DIRK). In particular, DIRK admits a simple analytical solution that can be evaluated with O ( N ) operations, instead of standard matrix inversion, which is O ( N ) 3 . Therefore, the analytical solution significantly reduces the computational cost of the multifluid method, making it suitable for studying the dynamics of systems with particle-size distributions. We demonstrate that the method conserves momentum to machine precision and converges to the correct equilibrium solution with constant external acceleration. To validate our numerical method we present a series of simple hydrodynamic tests, including damping of sound waves, dusty shocks, a multifluid dusty Jeans instability, and a steady-state gas-dust drift calculation. The simplicity of MDIRK lays the groundwork to build fast high-order, asymptotically stable multifluid methods.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know