The Resolved Behavior of Dust Mass, Polycyclic Aromatic Hydrocarbon Fraction, and Radiation Field in ∼800 Nearby Galaxies
Astrophysical Journal, Supplement Series, ISSN: 0067-0049, Vol: 276, Issue: 1
2025
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures3
- Readers3
Article Description
We present resolved 3.6-250 μm dust spectral energy distribution (SED) fitting for ∼800 nearby galaxies. We measure the distribution of radiation field intensities heating the dust, the dust mass surface density (Σ), and the fraction of dust in the form of polycyclic aromatic hydrocarbons (PAHs; q ). We find that the average interstellar radiation field ( U ¯ ) is correlated both with stellar mass surface density (Σ) and star formation rate surface density (Σ), while more intense radiation fields are only correlated with Σ. We show that q is a steeply decreasing function of Σ, likely reflecting PAH destruction in H ii regions. Galaxy-integrated q is strongly, negatively correlated with specific star formation rate (sSFR) and offset from the star-forming “main sequence” (ΔMS), suggesting that both metallicity and star formation intensity play a role in setting the global q . We also find a nearly constant M /M ratio for galaxies on the main sequence, with a lower ratio for more quiescent galaxies, likely due to their lower gas fractions. From these results, we construct prescriptions to estimate the radiation field distribution in both integrated and resolved galaxies. We test these prescriptions by comparing our predicted U ¯ to results of SED fitting for stacked “main-sequence” galaxies at 0 < z < 4 from M. Béthermin et al. and find sSFR is an accurate predictor of U ¯ even at these high redshifts. Finally, we describe the public delivery of matched-resolution Wide-field Infrared Survey Explorer and Herschel maps along with the resolved dust SED-fitting results through the Infrared Science Archive.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know