Compression force promotes glioblastoma progression through the Piezo1‑GDF15‑CTLA4 axis
Oncology Reports, ISSN: 1791-2431, Vol: 53, Issue: 1
2025
- 4Citations
- 6Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations4
- Citation Indexes4
- Captures6
- Readers6
Article Description
Glioma, a type of brain tumor, is influenced by mechanical forces in its microenvironment that affect cancer progression. However, our understanding of the contribution of compression and its associated mechanisms remains limited. The objective of the present study was to create an environment in which human brain glioma H4 cells experience pressure and thereby investigate the compressive mechanosensors and signaling pathways. Subsequent time‑lapse imaging and wound healing assays confirmed that 12 h of compression significantly increased cell migration, thereby linking compression with enhanced cell motility. Compression upregulated the expression of Piezo1, a mechanosensitive ion channel, and growth differentiation factor 15 (GDF15), a TGF‑β superfamily member. Knockdown experiments targeting PIEZO1 or GDF15 using small interfering RNA resulted in reduced cell motility, with Piezo1 regulating GDF15 expression. Compression also upregulated CTLA4, a critical immune checkpoint protein. The findings of the present study therefore suggest that compression enhances glioma progression by stimulating Piezo1, promoting GDF15 expression and increasing CTLA4 expression. Thus, these findings provide important insights into the influence of mechanical compression on glioma progression and highlight the involvement of the Piezo1‑GDF15 signaling pathway. Understanding tumor responses to mechanical forces in the brain microenvironment may guide the development of targeted therapeutic strategies to mitigate tumor progression and improve patient outcomes.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85209160285&origin=inward; http://dx.doi.org/10.3892/or.2024.8835; http://www.ncbi.nlm.nih.gov/pubmed/39513613; http://www.spandidos-publications.com/10.3892/or.2024.8835; https://dx.doi.org/10.3892/or.2024.8835; https://www.spandidos-publications.com/10.3892/or.2024.8835
Spandidos Publications
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know