Dynamic Network Flow Location Models and Algorithms for Quickest Evacuation Planning
Journal of Industrial and Management Optimization, ISSN: 1553-166X, Vol: 17, Issue: 5, Page: 2943-2970
2021
- 13Citations
- 9Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Dynamic network flow problems have wide applications in evacua-tion planning. From a given subset of arcs in a directed network, choosing the suitable arcs for facility location with a given objective is very important in the optimization of flow in emergency cases. Because of the decrease in capacity of an arc by placing a facility in it, there may be a reduction in the maximum flow or increase in the quickest time. In this work, we consider a problem of identifying the optimal facility locations so that the increase in the quickest time is minimum. Introducing the quickest FlowLoc problem, we give strongly polynomial time algorithms to solve the single facility case. Realizing NP-hardness of the multi-facility case, we develop a mixed integer programming formulation of it and propose two polynomial time heuristics for its solution. Because of the growing concerns of arc reversals in evacuation planning, we in-troduce the quickest ContraFlowLoc problem and present exact algorithms to solve the single-facility case and heuristics to solve the multi-facility case, with polynomial time complexity. The solutions thus obtained here are practically important, particularly in evacuation planning, to systematize traffic flow with facility allocation minimizing evacuation time.
Bibliographic Details
American Institute of Mathematical Sciences (AIMS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know