On stability of a class of second alpha-order fractal differential equations
AIMS Mathematics, ISSN: 2473-6988, Vol: 5, Issue: 3, Page: 2126-2142
2020
- 44Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this paper, we give a review of fractal calculus which is an expansion of standard calculus. Fractal calculus is applied for functions that are not differentiable or integrable on totally disconnected fractal sets such as middle-µ Cantor sets. Analogues of the Lyapunov functions and their features are given for asymptotic behaviors of fractal differential equations. The stability of fractal differentials in the sense of Lyapunov is defined. For the suggested fractal differential equations, sufficient conditions for the stability and uniform boundedness and convergence of the solutions are presented and proved. We present examples and graphs for more details of the results.
Bibliographic Details
American Institute of Mathematical Sciences (AIMS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know