(M, n)-harmonically polynomial convex functions and some hadamard type inequalities on the co-ordinates
AIMS Mathematics, ISSN: 2473-6988, Vol: 6, Issue: 5, Page: 4677-4690
2021
- 11Citations
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this study, we have introduced a new concept called (m, n)-harmonically polynomial convex functions on the co-ordinates. Then, we have demonstrated some properties of this definition. Based on the definition and some elementary analysis process, we have proved a new Hadamard type integral inequality on the coordinates for (m, n)-harmonically polynomial convex functions. Finally, we have established Hadamard type inequality for differentiable (m, n)-Harmonically polynomial convex functions. We have also given some special cases for bounded functions.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know