A variational image denoising model under mixed Cauchy and Gaussian noise
AIMS Mathematics, ISSN: 2473-6988, Vol: 7, Issue: 11, Page: 19696-19726
2022
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Article Description
In this article, we propose a novel variational model for restoring images in the presence of the mixture of Cauchy and Gaussian noise. The model involves a novel data-fidelity term that features the mixed noise as an infimal convolution of two noise distributions and total variation regularization. This data-fidelity term contributes to suitable separation of Cauchy noise and Gaussian noise components, facilitating simultaneous removal of the mixed noise. Besides, the total variation regularization enables adequate denoising in homogeneous regions while conserving edges. Despite the nonconvexity of the model, the existence of a solution is proven. By employing an alternating minimization approach and the alternating direction method of multipliers, we present an iterative algorithm for solving the proposed model. Experimental results validate the effectiveness of the proposed model compared to other existing models according to both visual quality and some image quality measurements.
Bibliographic Details
American Institute of Mathematical Sciences (AIMS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know