Existence, uniqueness and travelling waves to model an invasive specie interaction with heterogeneous reaction and non-linear diffusion
AIMS Mathematics, ISSN: 2473-6988, Vol: 7, Issue: 4, Page: 5768-5789
2022
- 2Citations
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
It is the objective to provide a mathematical treatment of a model to predict the behaviour of an invasive specie proliferating in a domain, but with a certain hostile zone. The behaviour of the invasive is modelled in the frame of a non-linear diffusion (of Porous Medium type) equation with non-Lipschitz and heterogeneous reaction. First of all, the paper examines the existence and uniqueness of solutions together with a comparison principle. Once the regularity principles are shown, the solutions are studied within the Travelling Waves (TW) domain together with stability analysis in the frame of the Geometric Perturbation Theory (GPT). As a remarkable finding, the obtained TW profile follows a potential law in the stable connection that converges to the stationary solution. Such potential law suggests that the pressure induced by the invasive over the hostile area increases over time. Nonetheless, the finite speed, induced by the non-linear diffusion, slows down a possible violent invasion.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know