A kinetic model considering the decline of antibody level and simulation about vaccination effect of COVID-19
Mathematical Biosciences and Engineering, ISSN: 1551-0018, Vol: 19, Issue: 12, Page: 12558-12580
2022
- 1Citations
- 9Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We build a model that consider the falling antibody levels and vaccination to assess the impact of falling antibody levels and vaccination on the spread of the COVID-19 outbreak, and simulate the influence of vaccination rates and failure rates on the number of daily new cases in England. We get that the lower the vaccine failure rate, the fewer new cases. Over time, vaccines with low failure rates are more effective in reducing the number of cases than vaccines with high failure rates and the higher the vaccine efficiency and vaccination rate, the lower the epidemic peak. The peak arrival time is related to a boundary value. When the failure rate is less than this boundary value, the peak time will advance with the decrease of failure rate; when the failure rate is greater than this boundary value, the peak time is delayed with the decrease of failure rate. On the basis of improving the effectiveness of vaccines, increasing the vaccination rate has practical significance for controlling the spread of the epidemic.
Bibliographic Details
American Institute of Mathematical Sciences (AIMS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know