PrivacyMask: Real-world privacy protection in face ID systems
Mathematical Biosciences and Engineering, ISSN: 1551-0018, Vol: 20, Issue: 2, Page: 1820-1840
2023
- 9Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures9
- Readers9
Article Description
Recent works have illustrated that many facial privacy protection methods are effective in specific face recognition algorithms. However, the COVID-19 pandemic has promoted the rapid innovation of face recognition algorithms for face occlusion, especially for the face wearing a mask. It is tricky to avoid being tracked by artificial intelligence only through ordinary props because many facial feature extractors can determine the ID only through a tiny local feature. Therefore, the ubiquitous high-precision camera makes privacy protection worrying. In this paper, we establish an attack method directed against liveness detection. A mask printed with a textured pattern is proposed, which can resist the face extractor optimized for face occlusion. We focus on studying the attack efficiency in adversarial patches mapping from two-dimensional to three-dimensional space. Specifically, we investigate a projection network for the mask structure. It can convert the patches to fit perfectly on the mask. Even if it is deformed, rotated and the lighting changes, it will reduce the recognition ability of the face extractor. The experimental results show that the proposed method can integrate multiple types of face recognition algorithms without significantly reducing the training performance. If we combine it with the static protection method, people can prevent face data from being collected.
Bibliographic Details
American Institute of Mathematical Sciences (AIMS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know