Comparison of intensity-based methods for automatic speech rate computation
Loquens, ISSN: 2386-2637, Vol: 9, Issue: 1-2
2023
- 1Citations
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations1
- Citation Indexes1
- CrossRef1
Article Description
Automatic computation of speech rate is a necessary task in a wide range of applications that require this prosodic feature, in which a manual transcription and time alignments are not available. Several tools have been developed to this end, but not enough research has been conducted yet to see to what extent they are scalable to other languages. In the present work, we take two off-the shelf tools designed for automatic speech rate computation and already tested for Dutch and English (v1, which relies on intensity peaks preceded by an intensity dip to find syllable nuclei and v3, which relies on intensity peaks surrounded by dips) and we apply them to read and spontaneous Spanish speech. Then, we test which of them offers the best performance. The results obtained with precision and normalized mean squared error metrics showed that v3 performs better than v1. However, recall measurement shows a better performance of v1, which suggests that a more fine-grained analysis on sensitivity and specificity is needed to select the best option depending on the application we are dealing with.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know