EVALUATION OF THE EFFECT OF POLY (-CAPROLACTONE)/POLY (L-LACTIC) ACID/GELATIN NANOFIBER 3D SCAFFOLD CONTAINING RESVERATROL ON BONE REGENERATION
Biomedical Engineering - Applications, Basis and Communications, ISSN: 1793-7132, Vol: 35, Issue: 5
2023
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Bone defects affect many people and impose expenses of costly treatment with possible complications. This study aims to investigate a novel Poly (-caprolactone)/Poly (L-lactic) acid/Gelatin nanofiber [PCL/PLA/GNF] scaffold containing 5% resveratrol (Resv) which was manufactured via thermally induced phase separation technique (TIPS), and its applicability for bone defect treatment. Gelatin nanofiber (GNF) was synthesized via the electrospinning method and mixed with PCL/PLA solution and then 5% resveratrol was added to fabricate a 3D scaffold via the TIPS technique. The prepared scaffolds were evaluated regarding their porosity, morphology, contact angle, degradation properties, biomechanical, blood compatibility, and cell viability via MTT assay. The scaffolds were further investigated by implantation in a rat femur defect model. PCL/PLA/GNF with 5% Resv showed a cancellated structure with irregular-shaped pores. The mean pore size was estimated to be 160 μm and the porosity was 80.56 ± 2.68%. The contact angle of the fabricated scaffold was 95.4 ± 3.4, which determines the hydrophobic nature of the scaffold. Increased cell viability in scaffolds was observed by adding resveratrol. Twelve weeks after the implantation of the scaffold into the bone defect, the defects filled with PCL/PLA/GNF-resveratrol contained scaffold were remarkably better than PCL/PLA/GNF and negative control group (89.23 ± 6.34% in 12 weeks), and the difference was significant (p ¡ 0.05). In conclusion, the PCL/PLA/GNF scaffold containing 5% of resveratrol demonstrated adequate mechanical and physical properties. There is possible applicability of PCL/PLA/GNF scaffold containing 5% of resveratrol for surgical treatment of bone defects.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know