Active learning and mapping: A survey and conception of a new stochastic methodology for high throughput materials discovery
Advanced Methods and Applications in Chemoinformatics: Research Progress and New Applications, Page: 111-138
2011
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
The data mining technology increasingly employed into new industrial processes, which require automatic analysis of data and related results in order to quickly proceed to conclusions. However, for some applications, an absolute automation may not be appropriate. Unlike traditional data mining, contexts deal with voluminous amounts of data, some domains are actually characterized by a scarcity of data, owing to the cost and time involved in conducting simulations or setting up experimental apparatus for data collection. In such domains, it is hence prudent to balance speed through automation and the utility of the generated data. The authors review the active learning methodology, and a new one that aims at generating successively new samples in order to reach an improved final estimation of the entire search space investigated according to the knowledge accumulated iteratively through samples selection and corresponding obtained results, is presented. The methodology is shown to be of great interest for applications such as high throughput material science and especially heterogeneous catalysis where the chemists do not have previous knowledge allowing to direct and to guide the exploration. © 2012, IGI Global.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84899318695&origin=inward; http://dx.doi.org/10.4018/978-1-60960-860-6.ch004; http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-60960-860-6.ch004; https://dx.doi.org/10.4018/978-1-60960-860-6.ch004; https://www.igi-global.com/gateway/chapter/56451
IGI Global
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know