Comparison of Organic and Inorganic - Modified Halloysite Nanotube for Improved Drug Delivery of Aspirin
Advances in Science and Technology, ISSN: 1662-0356, Vol: 143, Page: 15-20
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Halloysite nanotubes (HNTs), the naturally formed mineral clays with hollow tubular structures, have found promising applications as nanocarriers for drug delivery systems due to their biocompatibility and nontoxicity. By modifying the lumen of HNT, drug delivery of various types of sensitive and low-dissolution drugs could be enhanced. This study presents a comparison of the properties of modified HNTs containing an organic modifier (Sodium Laureth Sulfate, SLES) and an inorganic modifier (Sodium Thiosulfate, STS) as carriers of a slightly water-soluble drug, aspirin. HNTs modified by STS showed higher negative zeta potential than those modified by SLES, indicating that STS-modified HNTs are relatively more stable. The negative zeta potential of STSmodified HNT however decreased upon aspirin loading while that of SLES-modified HNT increased, implying that aspirin interacts with the modifiers differently. In terms of drug release, both modified HNTs showed an improved aspirin release rate compared with pure HNT. Moreover, the STSmodified HNT showed a higher aspirin release (21.5%) in the first hour but the SLES-modified HNT showed the highest cumulative release of 62.5% after 6 hours. These results therefore show that the developed modified HNTs improve the release of aspirin and demonstrate how the nature of the modifier (organic or inorganic) on the HNT lumen affects the behaviour of the drug release of aspirin. This also gives an avenue for modulating drug release based on certain requirements such as time and quantity of drug released.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know