The Effects of Fractional Relaxation Time and Magnetic Field on Blood Flow Through Arteries Along with Nanoparticles
Defect and Diffusion Forum, ISSN: 1662-9507, Vol: 424, Page: 59-76
2023
- 1Citations
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this paper, we report the effects of fractional relaxation time on the parameters of blood flow together with nanoparticles through straight circular cylindrical arterial segment. A mathematical model of blood flow subject to pulsatile pressure gradient in the axial direction with external magnetic field applied normal to the direction of flow is presented. Combining the momentum equation together with the Maxwell model parameter appropriately, leads to the governing fractional partial differential equation which permits to obtain the velocity profile of blood along with nanoparticles. By adopting the nondimensionalized form of the new version of the governing fractional partial differential equation allowed us to obtain the dimensionless relaxation time parameter λ1 which controls blood flow conditions. Solving the fractional partial differential equations using Laplace and finite Hankel transforms we found that the influences of the order of Caputo's fractional time-derivative and fractional relaxation time on the blood flow parameters with nanoparticles are enormous. The graphical results plotted of different influential parameters are presented and discussed in details. The velocities of blood flow and that of nanoparticles are reduced under the influence of the external magnetic field and the relaxation time parameter. The nanoparticles are assumed to be uniformly distributed within the blood, since they are flowing in the same axial direction designated by z along a circular cylindrical coordinates of radius R This is a very good indication that blood velocity can be controlled by the application of external magnetic field as well as the relaxation time parameter during treatment to avoid tissues damage. The present study has important applications in magnetic field control of biotechnological processes, bio magnetic device technology, biomedical engineering and pathology.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know