An Accurate Detection and Location of Weld Surface Defect Based on Laser Vision
Key Engineering Materials, ISSN: 1662-9795, Vol: 963, Page: 197-207
2023
- 1Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
In order to effectively improve the efficiency of automatic detection and subsequent processing of welding defects in the construction field, this paper proposes a method for detecting and locating weld surface defects based on machine vision and laser vision. YOLOv5 is used for the initial detection and identification of weld hole defects to obtain the approximate location of the defect. Subsequently, the detailed features of the defect sites are extracted by scanning the approximate range of defect locations with a line laser 3D sensor based on the identification of weld defect holes. Finally, the defect location and depth are accurately located based on the extracted features. Experimental results show that the proposed method is capable of identifying weld surface hole defects with an accuracy rate of over 94%. Furthermore, the combination of the system with the line laser 3D sensor detection can significantly improve the accuracy compared to pure 2D visual inspection, while the manual measurement is neither convenient nor accurate. This indicates that the proposed system can be used for rapid and accurate feature information extraction of weld hole defects, making subsequent remedial welding in actual engineering more automatic and efficient.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know