Evaluation of the Inter-Building Effect on Energy Saving Potential of Radiative Cooling Materials
Key Engineering Materials, ISSN: 1662-9795, Vol: 983, Page: 81-86
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
Buildings in the urban area have huge decarbonization potential by applying novel energy-saving technologies. Recently, radiative cooling materials have drawn much attention for their refrigerant-free and energy-free properties in reducing energy consumption. However, the complicated geometry and configuration of artificial structures in urban areas can significantly limit the actual application of radiative material. One limitation is the inter-building effect with shading on buildings. Therefore, this study developed a fast solar irradiation generator on buildings' envelope, and radiative materials' energy-saving potential was evaluated on buildings' wall areas with different irradiation strengths. A case study showed that radiative materials have higher cooling performance on the wall area with solar irradiation larger than 30 Wh/m
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know