Lithium tracer diffusion in sub-stoichiometric layered lithium-metal-oxide compounds
Defect and Diffusion Forum, ISSN: 1662-9507, Vol: 413, Page: 125-135
2021
- 5Citations
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Cathode materials based on lithium-metal-oxide compounds are an essential technical component for lithium-ion batteries, which are still being researched and continuously improved. For a fundamental understanding of kinetic processes at and in electrodes the Li diffusion is of high relevance. Most cathode materials are based on the layered LiCoO2 (LCO) and LiNi0.33Mn0.33Co0.33O2 (NMC333). In the present study Li tracer self-diffusion is investigated in polycrystalline sintered bulk samples of sub-stoichiometric Li0.9CoO2 at 145 °C ≤ T ≤ 350 °C and compared to Li0.9Ni0.33Mn0.33Co0.33O2 in the temperature range between 110 and 350 °C. For analysis, stable Li tracers are used in combination with secondary ion mass spectrometry (SIMS). The Li tracer diffusivities D of both compounds with a sub-stoichiometric Li concentration are identical within error limits and can be described by the Arrhenius law with an activation enthalpy of (0.76 ± 0.13) eV for LCO and (0.85 ± 0.03) eV for NMC333, which is interpreted as the migration energy of a single Li vacancy. This means that a modification of the transition metal (M) layer composition within the LiMO2 structure does not significantly influence lithium diffusion in the temperature range investigated.
Bibliographic Details
Trans Tech Publications, Ltd.
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know