Bioactive Ti metal with Ca-enriched surface layer able to release Sr ions
Key Engineering Materials, ISSN: 1662-9795, Vol: 587, Page: 269-274
2014
- 4Citations
- 10Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Bioactive Ti metal able to release Sr ions was prepared by chemical and heat treatments of Ti metal. Ti metal was initially soaked in 5M NaOH solution to form sodium hydrogen titanate. It was soaked in a mixed solution of CaCl and SrCl to replace its Na ions with Ca and Sr ions at a given range from 0.18 to 1.62 in Sr/Ca ratio. When it was heat-treated at 600 °C, it formed Sr-containing calcium titanate (SrCT) and rutile. The apatite formation in SBF of the treated metal was low, but increased markedly by subsequently soaking the metal in 1 M SrCl solution at 80 °C. Thus, the treated metal gradually released Sr ions into phosphate-buffered saline up to 0.9 ppm. It is expected that the Ti metal formed with the bioactive SrCT layer could release Sr ions in a living body to promote bone formation, and bond to a living bone through an apatite. © (2014) Trans Tech Publications, Switzerland.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84900547064&origin=inward; http://dx.doi.org/10.4028/www.scientific.net/kem.587.269; https://www.scientific.net/KEM.587.269; http://www.scientific.net/KEM.587.269; http://www.scientific.net/KEM.587.269.pdf; https://dx.doi.org/10.4028/www.scientific.net/kem.587.269
Trans Tech Publications, Ltd.
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know