FEM simulation analysis of ring compression test using stationary and rotating die under constant shear friction
Key Engineering Materials, ISSN: 1662-9795, Vol: 830 KEM, Page: 15-28
2020
- 1Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
The main objective of this research was to investigate the effect of friction on the behaviour of the metal flow and ring geometry, using comparisons from a stationary and rotating bottom die. This was carried out using friction calibration curves, compressive force analysis, stress and strain relationships and the reduction ratio of the ring specimen. The ring compression test (RCT) is considered one of the most reliable ways to obtain the friction factor existing in a plastic deformation process. This technique utilizes the dimensional changes of a test specimen to determine the magnitude of the friction factor. The variation of the calibration curve for the stationary die, with a range of m=0.0 to 0.9, and for the rotating die a range of m=0.1, 0.5 and 0.9. The frictional factor is calculated using FEM analysis, friction calibration and reduction ratio curves were generated from the compressive force using the DEFORM software package. The results indicated that the change in the inner diameter is related to the friction conditions and angular velocities at the die-workpiece interface.
Bibliographic Details
Trans Tech Publications, Ltd.
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know