Mast cell-fibroblast interactions induce matrix metalloproteinase-9 release from fibroblasts: Role for IgE-mediated mast cell activation
Journal of Immunology, ISSN: 1550-6606, Vol: 180, Issue: 5, Page: 3543-3550
2008
- 40Citations
- 28Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations40
- Citation Indexes40
- 40
- CrossRef34
- Captures28
- Readers28
- 28
Article Description
Mast cells adhere to fibroblasts, but the biological effects of adhesion are not well understood. We hypothesized that these adhesive interactions are important for tissue remodeling through the release of matrix metalloproteinases (MMP). Murine bone marrow cultured mast cells (BMCMC) were cocultured with NIH-3T3 fibroblasts or murine lung fibroblasts (CCL-206) and supernatants analyzed for MMP-9 release by gelatin zymography. Coculture of BMCMC for 24 h with NIH-3T3 or CCL-206 fibroblasts increased the release of MMP-9 from fibroblasts by 1.7 ± 0.2 and 2.0 ± 0.7-fold, respectively. Coculture of BMCMC and fibroblasts in the presence of IgE increased further MMP-9 release, which was released by fibroblasts. MMP-9 release was dependent on TNF released from IgE activated BMCMC and on adhesive interactions between BMCMC and fibroblasts. Increased MMP-9 release was also p44/42-dependent, as was MMP-9 up-regulation during coculture of fibroblasts with resting BMCMC. Finally, IgE injection into the mouse ear increased MMP-9 content of the ear tissue in the absence of Ag, indicating that IgE-mediated remodeling may play a pathogenic role in allergic conditions even in the absence of exposure to allergens. In conclusion, mast cell-fibroblast interactions induce the release of proteases important for tissue remodeling, such as MMP-9. MMP-9 release was further increased in the presence of IgE during coculture, suggesting a role for mast cell-fibroblast interactions in atopic conditions. Copyright © 2008 by The American Association of Immunologists, Inc.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=49149092277&origin=inward; http://dx.doi.org/10.4049/jimmunol.180.5.3543; http://www.ncbi.nlm.nih.gov/pubmed/18292581; https://journals.aai.org/jimmunol/article/180/5/3543/78652/Mast-Cell-Fibroblast-Interactions-Induce-Matrix; https://dx.doi.org/10.4049/jimmunol.180.5.3543; https://www.jimmunol.org/content/180/5/3543
Oxford University Press (OUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know