Content-based image retrieval of digitized histopathology in boosted spectrally embedded spaces
Journal of Pathology Informatics, ISSN: 2153-3539, Vol: 6, Issue: 1, Page: 41
2015
- 21Citations
- 30Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations21
- Citation Indexes21
- CrossRef21
- Captures30
- Readers30
- 30
Article Description
Context : Content-based image retrieval (CBIR) systems allow for retrieval of images from within a database that are similar in visual content to a query image. This is useful for digital pathology, where text-based descriptors alone might be inadequate to accurately describe image content. By representing images via a set of quantitative image descriptors, the similarity between a query image with respect to archived, annotated images in a database can be computed and the most similar images retrieved. Recently, non-linear dimensionality reduction methods have become popular for embedding high-dimensional data into a reduced-dimensional space while preserving local object adjacencies, thereby allowing for object similarity to be determined more accurately in the reduced-dimensional space. However, most dimensionality reduction methods implicitly assume, in computing the reduced-dimensional representation, that all features are equally important. Aims : In this paper we present boosted spectral embedding (BoSE), which utilizes a boosted distance metric to selectively weight individual features (based on training data) to subsequently map the data into a reduced-dimensional space. Settings and Design : BoSE is evaluated against spectral embedding (SE) (which employs equal feature weighting) in the context of CBIR of digitized prostate and breast cancer histopathology images. Materials and Methods : The following datasets, which were comprised of a total of 154 hematoxylin and eosin stained histopathology images, were used: (1) Prostate cancer histopathology (benign vs. malignant), (2) estrogen receptor (ER) + breast cancer histopathology (low vs. high grade), and (3) HER2+ breast cancer histopathology (low vs. high levels of lymphocytic infiltration). Statistical Analysis Used : We plotted and calculated the area under precision-recall curves (AUPRC) and calculated classification accuracy using the Random Forest classifier. Results : BoSE outperformed SE both in terms of CBIR-based (area under the precision-recall curve) and classifier-based (classification accuracy) on average across all of the dimensions tested for all three datasets: (1) Prostate cancer histopathology (AUPRC: BoSE = 0.79, SE = 0.63; Accuracy: BoSE = 0.93, SE = 0.80), (2) ER + breast cancer histopathology (AUPRC: BoSE = 0.79, SE = 0.68; Accuracy: BoSE = 0.96, SE = 0.96), and (3) HER2+ breast cancer histopathology (AUPRC: BoSE = 0.54, SE = 0.44; Accuracy: BoSE = 0.93, SE = 0.91). Conclusion : Our results suggest that BoSE could serve as an important tool for CBIR and classification of high-dimensional biomedical data.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know