Vehicle Type Classification with Small Dataset and Transfer Learning Techniques
EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, ISSN: 2410-0218, Vol: 11, Issue: 2, Page: 1-11
2024
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures3
- Readers3
Article Description
This study delves into the application of deep learning training techniques using a restricted dataset, encompassing around 400 vehicle images sourced from Kaggle. Faced with the challenges of limited data, the impracticality of training models from scratch becomes apparent, advocating instead for the utilization of pre-trained models with pre-trained weights. The investigation considers three prominent models—EfficientNetB0, ResNetB0, and MobileNetV2—with EfficientNetB0 emerging as the most proficient choice. Employing the gradually unfreeze layer technique over a specified number of epochs, EfficientNetB0 exhibits remarkable accuracy, reaching 99.5% on the training dataset and 97% on the validation dataset. In contrast, training models from scratch results in notably lower accuracy. In this context, knowledge distillation proves pivotal, overcoming this limitation and significantly improving accuracy from 29.5% in training and 20.5% in validation to 54% and 45%, respectively. This study uniquely contributes by exploring transfer learning with gradually unfreeze layers and elucidates the potential of knowledge distillation. It highlights their effectiveness in robustly enhancing model performance under data scarcity, thus addressing challenges associated with training deep learning models on limited datasets. The findings underscore the practical significance of these techniques in achieving superior results when confronted with data constraints in realworld scenarios.
Bibliographic Details
European Alliance for Innovation n.o.
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know