Brain Tumor Detection and Classification Using Deep Learning Models on MRI Scans
EAI Endorsed Transactions on Pervasive Health and Technology, ISSN: 2411-7145, Vol: 10
2024
- 2Citations
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations2
- Citation Indexes2
- CrossRef2
- Captures1
- Readers1
Article Description
INTRODUCTION: The primary goal of artificial intelligence (AI) is to develop computers that exhibit human-like behavior and functionality. Computer-based activities employing artificial intelligence encompass a variety of extra features beyond only pattern detection, planning, and problem resolution. METHODOLOGY: Machines use a set of techniques collectively called "deep learning." Magnetic resonance imaging (MRI) is employed with the use of deep learning methods to develop models that can effectively identify and classify brain cancers. This technique facilitates the rapid and straightforward detection of brain cancers. Brain problems mainly arise from the abnormal multiplication of brain cells, leading to detrimental alterations in brain structure and finally culminating in the development of cancer in the brain, malignant. Early detection of brain tumors along with following effective intervention can reduce mortality rates. This paper proposes convolutional neural network (CNN) architecture to effectively detect brain cancers using magnetic resonance (MR) images. RESULTS: This research further examines several models, including ResNet-50, VGG16, and Inception V3, and compares the proposed architecture and these models. For the efficacy of the models, many measures were evaluated, including accuracy, recall, loss, and area under the curve (AUC). After analyzing several models and comparing them with the suggested model using the specified metrics, it was determined that the proposed model exhibited superior performance compared to the alternative models. Based on an analysis conducted on data from 3265 MR images. CONCLUSION: It was seen that the CNN model exhibited a classification precision of 93.3%. Additionally, the area under the receiver operating characteristic curve (AUC) was determined to be 98.43%, while the recall rate was 91.19%. Furthermore, the model's loss function yielded a value of 0.25. Based on a comparative analysis with other models, it can be inferred that the suggested model is highly reliable in detecting various types of brain cancers at an early stage.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know