Diabetic Retinopathy Classification Using Deep Learning
EAI Endorsed Transactions on Pervasive Health and Technology, ISSN: 2411-7145, Vol: 9
2023
- 3Citations
- 39Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
One of the main causes of adult blindness and a frequent consequence of diabetes is diabetic retinopathy (DR). To avoid visual loss, DR must be promptly identified and classified. In this article, we suggest an automated DR detection and classification method based on deep learning applied to fundus pictures. The suggested technique uses transfer learning for classification. On a dataset of 3,662 fundus images with real-world DR severity labels, we trained and validated our model. According to our findings, the suggested technique successfully detected and classified DR with an overall accuracy of 78.14%. Our model fared better than other recent cutting-edge techniques, illuminating the promise of deep learning-based strategies for DR detection and management. Our research indicates that the suggested technique may be employed as a screening tool for DR in a clinical environment, enabling early illness diagnosis and prompt treatment.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know