Anatomical mining method of cervical nerve root syndrome under visual sensing technology
EAI Endorsed Transactions on Pervasive Health and Technology, ISSN: 2411-7145, Vol: 8, Issue: 3
2022
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
INTRODUCTION: The gray resolution of anatomical image of cervical nerve root syndrome is low, that can not be mined accurately. OBJECTIVES: Aiming at the defect of low gray resolution of anatomical images, an image mining method using visual perception technology was studied. METHODS: According to the visual perception technology, the internal parameter matrix and external parameter matrix of binocular visual camera were determined by coordinate transformation, and the anatomical images of cervical nerve root syndrome were collected. The collected images are smoothed and enhanced by nonlinear smoothing algorithm and multi-scale nonlinear contrast enhancement method. The directional binary simple descriptor method is selected to extract the features of the enhanced image; Using K-means clustering algorithm, the anatomical image mining of cervical nerve root syndrome is completed by obtaining the initial clustering center and image mining. RESULTS: Experimental results show that the information entropy of the images mined by the proposed method is higher than 5, the average gradient is greater than 7, the edge information retention is greater than 0.7, the peak signal-to-noise ratio is higher than 30 dB, and the similarity of the same category of images is greater than 0.9. CONCLUSIONS: This method can effectively mine the anatomical images of cervical nerve root syndrome and provide an important basis for the diagnosis and treatment of cervical nerve root syndrome.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know