An archaeal origin for the actin cytoskeleton: Implications for eukaryogenesis.
Communicative & integrative biology, ISSN: 1942-0889, Vol: 4, Issue: 6, Page: 664-7
2011
- 21Citations
- 47Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations21
- Citation Indexes21
- CrossRef21
- Captures47
- Readers47
- 47
Article Description
A hallmark of the eukaryotic cell is the actin cytoskeleton, involved in a wide array of processes ranging from shape determination and phagocytosis to intracellular transport and cytokinesis. Recently, we reported the discovery of an actin-based cytoskeleton also in Archaea. The archaeal actin ortholog, Crenactin, was shown to belong to a conserved operon, Arcade (actin-related cytoskeleton in Archaea involved in shape determination), encoding an additional set of cytoskeleton-associated proteins. Here, we elaborate on the implications of these findings for the evolutionary relation between archaea and eukaryotes, with particular focus on the possibility that eukaryotic actin and actin-related proteins have evolved from an ancestral archaeal actin gene. Archaeal actin could thus have played an important role in cellular processes essential for the origin and early evolution of the eukaryotic lineage. Further exploration of uncharacterized archaeal lineages is necessary to find additional missing pieces in the evolutionary trajectory that ultimately gave rise to present-day organisms.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know