A parity game tale of two counters
Electronic Proceedings in Theoretical Computer Science, EPTCS, ISSN: 2075-2180, Vol: 305, Page: 107-122
2019
- 6Citations
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Parity games are simple infinite games played on finite graphs with a winning condition that is expressive enough to capture nested least and greatest fixpoints. Through their tight relationship to the modal mu-calculus, they are used in practice for the model-checking and synthesis problems of the mu-calculus and related temporal logics like LTL and CTL. Solving parity games is a compelling complexity theoretic problem, as the problem lies in the intersection of UP and co-UP and is believed to admit a polynomial-time solution, motivating researchers to either find such a solution or to find superpolynomial lower bounds for existing algorithms to improve the understanding of parity games. We present a parameterized parity game called the Two Counters game, which provides an exponential lower bound for a wide range of attractor-based parity game solving algorithms. We are the first to provide an exponential lower bound to priority promotion with the delayed promotion policy, and the first to provide such a lower bound to tangle learning.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know