An integrated development environment for the prototype verification system
Electronic Proceedings in Theoretical Computer Science, EPTCS, ISSN: 2075-2180, Vol: 310, Page: 35-49
2019
- 10Citations
- 23Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
The steep learning curve of formal technologies is a well-known barrier to the adoption of formal verification tools in industry. This paper presents VSCode-PVS, a modern integrated development environment for the Prototype Verification System (PVS). This new environment integrates the editing and proof management functionalities of PVS in Visual Studio Code, a popular code editor widely used by software developers. VSCode-PVS provides functionalities that developers expect to find in modern verification tools, but are not available in the standard Emacs front-end of PVS, such as auto-completion, point-and-click navigation of definitions, live diagnostics for errors, and literate programming. The main features and architecture of the environment are presented, along with a comparison with other similar tools.
Bibliographic Details
Open Publishing Association
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know