Input-output conformance testing for channel-based service connectors
Electronic Proceedings in Theoretical Computer Science, EPTCS, ISSN: 2075-2180, Vol: 60, Page: 19-35
2011
- 5Citations
- 8Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Service-based systems are software systems composed of autonomous components or services provided by different vendors, deployed on remote machines and accessible through the web. One of the challenges of modern software engineering is to ensure that such a system behaves as intended by its designer. The Reo coordination language is an extensible notation for formal modeling and execution of service compositions. Services that have no prior knowledge about each other communicate through advanced channel connectors which guarantee that each participant, service or client, receives the right data at the right time. Each channel is a binary relation that imposes synchronization and data constraints on input and output messages. Furthermore, channels are composed together to realize arbitrarily complex behavioral protocols. During this process, a designer may introduce errors into the connector model or the code for their execution, and thus affect the behavior of a composed service. In this paper, we present an approach for model-based testing of coordination protocols designed in Reo. Our approach is based on the input-output conformance (ioco) testing theory and exploits the mapping of automata-based semantic models for Reo to equivalent process algebra specifications.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know