RouteE: A Vehicle Energy Consumption Prediction Engine
SAE Technical Papers, ISSN: 0148-7191, Vol: 2020-April, Issue: April, Page: 2760-2767
2020
- 8Citations
- 26Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
The emergence of connected and automated vehicles and smart cities technologies create the opportunity for new mobility modes and routing decision tools, among many others. To achieve maximum mobility and minimum energy consumption, it is critical to understand the energy cost of decisions and optimize accordingly. The Route Energy prediction model (RouteE) enables accurate estimation of energy consumption for a variety of vehicle types over trips or sub-trips where detailed drive cycle data are unavailable. Applications include vehicle route selection, energy accounting and optimization in transportation simulation, and corridor energy analyses, among others. The software is a Python package that includes a variety of pre-trained models from the National Renewable Energy Laboratory (NREL). However, RouteE also enables users to train custom models using their own data sets, making it a robust and valuable tool for both fast calculations and rigorous, data-rich research efforts. The pre-trained RouteE models are established using NREL's Future Automotive Systems Technology Simulator paired with approximately 1 million miles of drive cycle data from the Transportation Secure Data Center, resulting in energy consumption behavior estimates over a representative sample of driving conditions for the United States. Validations have been performed using on-road fuel consumption data for conventional and electrified vehicle powertrains. Transferring the results of the on-road validation to a larger set of real-world origin-destination pairs, it is estimated that implementing the present methodology in a green-routing application would accurately select the route that consumes the least fuel 90% of the time. The novel machine learning techniques used in RouteE make it a flexible and robust tool for a variety of transportation applications.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85083839670&origin=inward; http://dx.doi.org/10.4271/2020-01-0939; https://www.sae.org/content/2020-01-0939; https://dx.doi.org/10.4271/2020-01-0939; https://saemobilus.sae.org/articles/routee-a-vehicle-energy-consumption-prediction-engine-2020-01-0939
SAE International
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know