PlumX Metrics
Embed PlumX Metrics

Additive Approach for Inactivation of Escherichia coli O157:H7, Salmonella, and Shigella spp. on Contaminated Fresh Fruits and Vegetables Using Bacteriophage Cocktail and Produce Wash

Journal of Food Protection, ISSN: 0362-028X, Vol: 76, Issue: 8, Page: 1336-1341
2013
  • 72
    Citations
  • 0
    Usage
  • 138
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

The incidence of foodborne outbreaks involving fresh produce is of worldwide concern. Lytic bacteriophage cocktails and a levulinic acid produce wash were investigated for their effectiveness against the foodborne pathogens Escherichia coli O157:H7, Shigella spp., and Salmonella on broccoli, cantaloupe, and strawberries. Inoculated samples were treated with bacteriophage cocktails (BC) before storage at 10°C for 24 h, a levulinic acid produce wash (PW) after storage at 10°C for 24 h, or a combination of the washes (BCPW) before and after storage. All three treatments were compared against a 200-ppm free available chlorine wash. Wash solutions were prepared using potable water and water with an increased organic content of 2.5 g/liter total dissolved solids and total organic carbon. BCPW was the most effective treatment, producing the highest log reductions in the pathogens. Produce treated with BCPW in potable water with a PW exposure time of 5 min resulted in the highest reduction of each pathogen for all samples tested. The type of produce and wash solution had significant effects on the efficacy of the individual treatments. The chlorine wash in water with higher organic content was the least effective treatment tested. An additive effect of BCPW was seen in water with higher organic content, resulting in greater than 4.0-log reductions in pathogens. Our findings indicate that the combination of antimicrobial BC with a commercial produce wash is a very effective method for treating produce contaminated with E. coli O157:H7, Shigella spp., and Salmonella even in the presence of high loads of organic matter.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know