Application-Based Online Traffic Classification with Deep Learning Models on SDN Networks
Advances in Technology Innovation, ISSN: 2518-2994, Vol: 5, Issue: 4, Page: 216-229
2020
- 29Citations
- 44Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The traffic classification based on the network applications is one important issue for network management. In this paper, we propose an application-based online and offline traffic classification, based on deep learning mechanisms, over software-defined network (SDN) testbed. The designed deep learning model, resigned in the SDN controller, consists of multilayer perceptron (MLP), convolutional neural network (CNN), and Stacked Auto-Encoder (SAE), in the SDN testbed. We employ an open network traffic dataset with seven most popular applications as the deep learning training and testing datasets. By using the TCPreplay tool, the dataset traffic samples are re-produced and analyzed in our SDN testbed to emulate the online traffic service. The performance analyses, in terms of accuracy, precision, recall, and F1 indicators, are conducted and compared with three deep learning models.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85098589065&origin=inward; http://dx.doi.org/10.46604/aiti.2020.4286; http://ojs.imeti.org/index.php/AITI/article/view/4286; http://ojs.imeti.org/index.php/AITI/article/download/4286/992; https://dx.doi.org/10.46604/aiti.2020.4286; https://ojs.imeti.org/index.php/AITI/article/view/4286
Taiwan Association of Engineering and Technology Innovation
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know