Optimization of 4-chlorophenol regeneration from powdered activated carbon using response surface methodology
Desalination and Water Treatment, ISSN: 1944-3986, Vol: 151, Page: 372-383
2019
- 7Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures7
- Readers7
Article Description
In this study, an experimental study aimed at optimizing the factors affecting the regeneration amount of 4-chlorophenol (4-CP) from spent powdered activated carbon (PAC) is presented. For this response surface methodology (RSM) with Box-Behnken design was applied, which identified four variables (acoustic density, NaOH concentration, spent PAC dosage and ethanol concentration) in batch experiments. The physicochemical characteristics of the regenerated PAC under the optimal desorption condition was evaluated using thermogravimetric analysis, Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) and scanning electron microscopy, as compared with the virgin and spent PACs. Among the four variables, acoustic density and ethanol concentration (v/v, %) had stronger effect on the 4-CP desorption (p < 0.001). The predicted optimal 4-CP desorbing amount was 97.43 mg g –1, and this matched well the observed performance of (96.94 ± 0.70) mg g –1, obtained by acoustic density of 0.36 W mL –1, NaOH concentration of 0.10 mol L –1, spent PAC dosage of 0.93 g L –1 and ethanol concentration (v/v) of 24%. The result of thermogravimetric pyrolysis profiles of regenerated PAC confirmed that the adsorption behavior of 4-CP exhibited a chemisorption feature and desorption process was dominated by chemical reaction. Analysis of FTIR, pore structure and BET surface area demonstrated that ultrasound mainly acted on the surface functionalities, macro-pore and meso-pore structure of PAC. Additionally, the SEM images indicated that cavitation effect affected the surface roughness and surface cavities of PAC. The results here provided an insight into the application of ultrasound to regenerate saturated PAC with 4-CP.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1944398624106492; http://dx.doi.org/10.5004/dwt.2019.23824; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85065699689&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1944398624106492; https://dx.doi.org/10.5004/dwt.2019.23824
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know