Measurement report: A comparison of ground-level ice-nucleating-particle abundance and aerosol properties during autumn at contrasting marine and terrestrial locations
Atmospheric Chemistry and Physics, ISSN: 1680-7324, Vol: 24, Issue: 9, Page: 5433-5456
2024
- 1Citations
- 4Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Research from West Texas A&M University Reveals New Findings on Atmospheric Chemistry and Physics (Measurement report: A comparison of ground-level ice-nucleating-particle abundance and aerosol properties during autumn at contrasting marine and ...)
2024 MAY 17 (NewsRx) -- By a News Reporter-Staff News Editor at NewsRx Science Daily -- Current study results on atmospheric chemistry and physics have
Article Description
Ice-nucleating particles (INPs) are an essential class of aerosols found worldwide that have far-reaching but poorly quantified climate feedback mechanisms through interaction with clouds and impacts on precipitation. These particles can have highly variable physicochemical properties in the atmosphere, and it is crucial to continuously monitor their long-Term concentration relative to total ambient aerosol populations at a wide variety of sites to comprehensively understand aerosol-cloud interactions in the atmosphere. Hence, our study applied an in situ forced expansion cooling device to measure ambient INP concentrations and test its automated continuous measurements at atmospheric observatories, where complementary aerosol instruments are heavily equipped. Using collocated aerosol size, number, and composition measurements from these sites, we analyzed the correlation between sources and abundance of INPs in different environments. Toward this aim, we have measured ground-level INP concentrations at two contrasting sites, one in the Southern Great Plains (SGP) region of the United States with a substantial terrestrially influenced aerosol population and one in the Eastern North Atlantic Ocean (ENA) region with a primarily marine-influenced aerosol population. These measurements examined INPs mainly formed through immersion freezing and were performed at a ≤g12gmin resolution and with a wide range of heterogeneous freezing temperatures (Ts above-31g°C) for at least 45gd at each site. The associated INP data analysis was conducted in a consistent manner. We also explored the additional offline characterization of ambient aerosol particle samples from both locations in comparison to in situ data. From our ENA data, on average, INP abundance ranges from ≈g1 to ≈g20gL-1 (-30g°Cg≤gTg≤g-20g°C) during October-November 2020. Backward air mass trajectories reveal a strong marine influence at ENA with 75.7g% of air masses originating over the Atlantic Ocean and 96.6g% of air masses traveling over open water, but analysis of particle chemistry suggests an additional INP source besides maritime aerosols (e.g., sea spray aerosols) at ENA. In contrast, 90.8g% of air masses at the SGP location originated from the North American continent, and 96.1g% of the time, these air masses traveled over land. As a result, organic-rich SGP aerosols from terrestrial sources exhibited notably high INP abundance from ≈g1 to ≈g100gL-1 (-30g°Cg≤gTg≤g-15g°C) during October-November 2019. The probability density function of aerosol surface area-scaled immersion freezing efficiency (ice nucleation active surface site density; ns) was assessed for selected freezing temperatures. While the INP concentrations measured at SGP are higher than those of ENA, the ns(T) values of SGP (≈g105 to ≈g107gm-2 for-30g°Cg≤gTg≤g-15g°C) are reciprocally lower than ENA for approximately 2 orders of magnitude (≈g107 to ≈g109gm-2 for-30g°Cg≤gTg≤g-15g°C). The observed difference in ns(T) mainly stems from varied available aerosol surface areas, Saer, from two sites (Saer,SGPg>gSaer,ENA). INP parameterizations were developed as a function of examined freezing temperatures from SGP and ENA for our study periods.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know