A strategy for the measurement of CO distribution in the stratosphere
Atmospheric Measurement Techniques, ISSN: 1867-8548, Vol: 9, Issue: 12, Page: 5853-5867
2016
- 1Citations
- 5Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this study we introduce a new strategy for the measurement of CO distribution in the stratosphere. The proposed experiment is based on an orbiting limb sounder that measures the atmospheric emission within both the thermal infrared (TIR) and far-infrared (FIR) regions. The idea is to exploit the contribution of the pure rotational transitions of molecular oxygen in the FIR to determine the atmospheric fields of temperature and pressure that are necessary to retrieve the distribution of CO from its rovibrational transitions in the TIR. The instrument envisaged to test the new strategy is a Fourier transform spectrometer with two output ports hosting a FIR detector devoted to measuring the O transitions and a TIR detector devoted to measure the CO transitions. Instrumental and observational parameters of the proposed experiment have been defined by exploiting the heritage of both previous studies and operational limb sounders. The performance of the experiment has been assessed with two-dimensional (2-D) retrievals on simulated observations along a full orbit. For this purpose, optimal spectral intervals have been defined using a validated selection algorithm. Both precision and spatial resolution of the obtained CO distributions have been taken into account in the results-evaluation process. We show that the O spectral features significantly contribute to the performance of CO retrievals and that the proposed experiment can determine 2-D distributions of the CO volume mixing ratio with precisions of the order of 1 ppmv in the 10-50 km altitude range. The error budget, estimated for the test case of an ideal instrument and neglecting the spectroscopic errors, indicates that, in the 10-50 km altitude range, the total error of the CO fields is set by the random component. This is also the case at higher altitudes, provided the retrieval system is able to model the non-local thermal equilibrium conditions of the atmosphere. The best performance is obtained at altitudes between 20 and 50 km, where the vertical resolution ranges from 3 to 5 km, and the horizontal resolution is of the order of 300-350 km depending on latitude.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know