Parameter-induced uncertainty quantification of soil N O, NO and CO emission from Höglwald spruce forest (Germany) using the LandscapeDNDC model
Biogeosciences, ISSN: 1726-4170, Vol: 9, Issue: 10, Page: 3983-3998
2012
- 15Citations
- 46Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Assessing the uncertainties of simulation results of ecological models is becoming increasingly important, specifically if these models are used to estimate greenhouse gas emissions on site to regional/national levels. Four general sources of uncertainty effect the outcome of process-based models: (i) uncertainty of information used to initialise and drive the model, (ii) uncertainty of model parameters describing specific ecosystem processes, (iii) uncertainty of the model structure, and (iv) accurateness of measurements (e.g., soil-atmosphere greenhouse gas exchange) which are used for model testing and development. The aim of our study was to assess the simulation uncertainty of the process-based biogeochemical model LandscapeDNDC. For this we set up a Bayesian framework using a Markov Chain Monte Carlo (MCMC) method, to estimate the joint model parameter distribution. Data for model testing, parameter estimation and uncertainty assessment were taken from observations of soil fluxes of nitrous oxide (N O), nitric oxide (NO) and carbon dioxide (CO ) as observed over a 10 yr period at the spruce site of the Höglwald Forest, Germany. By running four independent Markov Chains in parallel with identical properties (except for the parameter start values), an objective criteria for chain convergence developed by Gelman et al. (2003) could be used. Our approach shows that by means of the joint parameter distribution, we were able not only to limit the parameter space and specify the probability of parameter values, but also to assess the complex dependencies among model parameters used for simulating soil C and N trace gas emissions. This helped to improve the understanding of the behaviour of the complex LandscapeDNDC model while simulating soil C and N turnover processes and associated C and N soil-atmosphere exchange. In a final step the parameter distribution of the most sensitive parameters determining soil-atmosphere C and N exchange were used to obtain the parameter-induced uncertainty of simulated N O, NO and CO emissions. These were compared to observational data of an calibration set (6 yr) and an independent validation set of 4 yr. The comparison showed that most of the annual observed trace gas emissions were in the range of simulated values and were predicted with a high certainty (Root-mean-squared error (RMSE) NO: 2.4 to 18.95 g N ha d , N O: 0.14 to 21.12 g N ha d , CO : 5.4 to 11.9 kg C ha d ). However, LandscapeDNDC simulations were sometimes still limited to accurately predict observed seasonal variations in fluxes. © Author(s) 2012.
Bibliographic Details
Copernicus GmbH
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know