The influence of terracettes on the surface hydrology of steep-sloping and subalpine environments: Some preliminary findings
Geographica Helvetica, ISSN: 0016-7312, Vol: 70, Issue: 1, Page: 63-73
2015
- 6Citations
- 18Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Alpine and mountain slopes represent important pathways that link high-altitude grazing areas to meadows and rangelands at lower elevations. Given the often acute gradients associated with such environments, they potentially represent highly efficient runoff conveyance routes that facilitate the downslope movement of runoff and associated material during erosion events. Many such slopes host series of small steps, or “terracettes”. The juxtaposition of terracettes against the natural downslope flow path of non-complex slopes leads us to hypothesise that they may influence typical hillslope processes by intercepting or capturing surface runoff. Here we report preliminary results and some tentative conclusions from ongoing work to explore this possibility. Google Earth was used to initially identify a ca. 400 m well-developed terracette system situated on a west-facing slope with gradients ranging from 25 to 40° (46 to 84%). A digital elevation model (DEM) of the terracettes was constructed using spatial data taken from a relevant section of topographic map. The DEM was then queried using a flow-accumulation algorithm and the results displayed in a geographic information system. The output data provided “proof of concept” that terracettes can capture surface runoff. The generation of empirical data from a series of rainfall/runoff simulations performed on the same section of terracettes supports this finding. Results from both work components indicate that sections of a terracette system may intercept runoff and could act as preferential flow pathways. By contrast, some sections appeared to act as depositional sites. We cautiously predict that these areas could act as retention zones for the temporary storage of runoff-associated substances. Greater understanding of the exact influence of terracettes on surface hydrology in steep-sloping and subalpine environments could benefit the future management of grazing and rangelands in such areas. © Author(s) 2015. This work is distributed.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know