Detection of ice core particles via deep neural networks
Cryosphere, ISSN: 1994-0424, Vol: 17, Issue: 2, Page: 539-565
2023
- 3Citations
- 20Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Insoluble particles in ice cores record signatures of past climate parameters like vegetation dynamics, volcanic activity, and aridity. For some of them, the analytical detection relies on intensive bench microscopy investigation and requires dedicated sample preparation steps. Both are laborious, require in-depth knowledge, and often restrict sampling strategies. To help overcome these limitations, we present a framework based on flow imaging microscopy coupled to a deep neural network for autonomous image classification of ice core particles. We train the network to classify seven commonly found classes, namely mineral dust, felsic and mafic (basaltic) volcanic ash grains (tephra), three species of pollen (Corylus avellana, Quercus robur, Quercus suber), and contamination particles that may be introduced onto the ice core surface during core handling operations. The trained network achieves 96.8ĝ€¯% classification accuracy at test time. We present the system's potential and its limitations with respect to the detection of mineral dust, pollen grains, and tephra shards, using both controlled materials and real ice core samples. The methodology requires little sample material, is non-destructive, fully reproducible, and does not require any sample preparation procedures. The presented framework can bolster research in the field by cutting down processing time, supporting human-operated microscopy, and further unlocking the paleoclimate potential of ice core records by providing the opportunity to identify an array of ice core particles. Suggestions for an improved system to be deployed within a continuous flow analysis workflow are also presented.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know