Diagnosis of COVID-19 in X-ray Images using Deep Neural Networks
International Research Journal of Multidisciplinary Technovation, ISSN: 2582-1040, Vol: 6, Issue: 3, Page: 232-244
2024
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures4
- Readers4
Article Description
The global COVID-19 pandemic has presented unprecedented challenges, notably the limited availability of test kits, hindering timely and accurate disease diagnosis. Rapid identification of pneumonia, a common COVID-19 consequence, is crucial for effective management. This study focuses on COVID-19 classification from Chest X-ray images, employing an innovative approach: adapting the Xception model into a U-Net architecture via the Segmentation_Models package. Leveraging deep learning and image segmentation, the U-Net architecture, a CNN variant, proves ideal for this task, particularly after tailoring its output layer for classification. By utilizing the Xception model, we aim to enhance COVID-19 classification accuracy and efficiency. The results demonstrate promising autonomous identification of COVID-19 cases, offering valuable support to healthcare professionals. The fusion of medical imaging data with advanced neural network architectures highlights avenues for improving diagnostic accuracy during the pandemic. Notably, precision, recall, and F1 scores for each class are reported: Normal (Precision = 0.98, Recall = 0.9608, F1 Score = 0.9704), Pneumonia (Precision = 0.9579, Recall = 0.9579, F1 Score = 0.9579), and COVID-19 (Precision = 0.96, Recall = 0.9796, F1 Score = 0.9698). These findings underscore the effectiveness of our approach in accurately classifying COVID-19 cases from chest X-ray images, offering promising avenues for enhancing diagnostic capabilities during the pandemic.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know