Electrostatically assisted macroion association
Condensed Matter Physics, ISSN: 2224-9079, Vol: 24, Issue: 3, Page: 1-8
2021
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A model system of highly asymmetric polyelectrolyte with directional short-range attractive interactions was studied by canonical Monte Carlo computer simulations. Comparison of MC data with previously published theoretical results shows good agreement. For moderate values of binding energies, which matches those of molecular docking, a dynamic equilibrium between free and dimerized macroions is observed. Fraction of dimerized macroions depends on macroion concentration, binding energy magnitude, and on the valency of small counterions. Divalent counterions induce an effective attraction between macroions and enhance dimerization. This effect is most notable at low to moderate macroion concentrations.
Bibliographic Details
Institute for Condensed Matter Physics
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know