In Situ X-ray Diffraction and Crystal Orientation Analysis for Dy–Ni Electrochemical Alloying and De-alloying in Molten LiCl–KCl–DyCl
Electrochemistry, ISSN: 2186-2451, Vol: 92, Issue: 4, Page: 043004-043004
2024
- 25Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures25
- Readers25
- 25
Article Description
In situ white X-ray diffraction was used to investigate the electrochemical alloying and de-alloying processes of Dy–Ni alloys in molten LiCl–KCl–DyCl at 723 K. X-ray diffraction peaks of Ni and DyNi and fluorescence peaks of Dy were obtained. DyNi was the only identified Dy–Ni alloy, although previous ex situ studies have reported the formation of several Dy–Ni alloys. During the de-alloying process, the apparent lattice constant of DyNi decreased to a small value. Also, the area of Dy fluorescence peaks increased, which can be attributed to the formation of a Dy compound layer on the electrode surface. Electron backscatter diffraction was performed to clarify the relationship between the crystal orientations of Ni and DyNi after electrochemical alloying or sequential alloying and de-alloying. The results confirmed that Dy–Ni alloying was faster at the Ni grain boundaries. In addition, DyNi or porous Ni grains in reacted regions had similar crystal orientations as adjacent Ni grains in unreacted regions. These results help clarify the rapid electrochemical formation mechanism of Dy–Ni alloys in molten LiCl–KCl, which can help facilitate the separation and recovery of rare-earth elements, such as Dy, from spent magnets.
Bibliographic Details
The Electrochemical Society of Japan
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know