Concordance in Breast Cancer Grading by Artificial Intelligence on Whole Slide Images Compares With a Multi-Institutional Cohort of Breast Pathologists
Archives of Pathology and Laboratory Medicine, ISSN: 1543-2165, Vol: 146, Issue: 11, Page: 1369-1377
2022
- 15Citations
- 62Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations15
- Citation Indexes15
- 15
- CrossRef3
- Captures62
- Readers62
- 62
Article Description
Context.-Breast carcinoma grade, as determined by the Nottingham Grading System (NGS), is an important criterion for determining prognosis. The NGS is based on 3 parameters: tubule formation (TF), nuclear pleomorphism (NP), and mitotic count (MC). The advent of digital pathology and artificial intelligence (AI) have increased interest in virtual microscopy using digital whole slide imaging (WSI) more broadly. Objective.-To compare concordance in breast carcinoma grading between AI and a multi-institutional group of breast pathologists using digital WSI. Design.-We have developed an automated NGS framework using deep learning. Six pathologists and AI independently reviewed a digitally scanned slide from 137 invasive carcinomas and assigned a grade based on scoring of the TF, NP, and MC. Results.-Interobserver agreement for the pathologists and AI for overall grade was moderate (j = 0.471). Agreement was good (j = 0.681), moderate (j = 0.442), and fair (j = 0.368) for grades 1, 3, and 2, respectively. Observer pair concordance for AI and individual pathologists ranged from fair to good (j = 0.313-0.606). Perfect agreement was observed in 25 cases (27.4%). Interobserver agreement for the individual components was best for TF (j = 0.471 each) followed by NP (j = 0.342) and was worst for MC (j = 0.233). There were no observed differences in concordance amongst pathologists alone versus pathologists AI. Conclusions.-Ours is the first study comparing concordance in breast carcinoma grading between a multiinstitutional group of pathologists using virtual microscopy to a newly developed WSI AI methodology. Using explainable methods, AI demonstrated similar concordance to pathologists alone.
Bibliographic Details
Archives of Pathology and Laboratory Medicine
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know