Adaptive Elastic Net on High-Dimensional Sparse Data with Multicollinearity: Application to Lipomatous Tumor Classification
International Journal of Statistics in Medical Research, ISSN: 1929-6029, Vol: 13, Page: 30-40
2024
- 1Citations
- 6Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Predictive models can experience instabilities because of the combination of high-dimensional sparse data and multicollinearity problems. The adaptive Least Absolute Shrinkage and Selection Operator (adaptive Lasso) and adaptive elastic net were developed using the adaptive weight on penalty term. These adaptive weights are related to the power order of the estimators. Therefore, we concentrate on the power of adaptive weight on these penalty functions. This study purposed to compare the performances of the power of the adaptive Lasso and adaptive elastic net methods under high-dimensional sparse data with multicollinearity. Moreover, we compared the performances of the ridge, Lasso, elastic net, adaptive Lasso, and adaptive elastic net in terms of the mean of the predicted mean squared error (MPMSE) for the simulation study and the classification accuracy for a real-data application. The results of the simulation and the real-data application showed that the square root of the adaptive elastic net performed best on high-dimensional sparse data with multicollinearity.
Bibliographic Details
Lifescience Global
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know