PlumX Metrics
Embed PlumX Metrics

Molecular dynamics simulations of high velocity shock compressed TNT

Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, ISSN: 0459-1879, Vol: 47, Issue: 1, Page: 174-179
2015
  • 6
    Citations
  • 0
    Usage
  • 1
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

We simulate the shock compression behavior of TNT with ReaxFF-MD. When shock compression is complete, all of the TNT molecules are decomposed, and when volume compression is up to the 40% of original volume, pressure of the system reaches a peak. Close behind is rarefaction wave reverse stretching the compressed energetic materials and leading to a large number of atoms or molecules group splash to the downstream, pressure begin to unload at the same time. Density and particle wave velocity profile show a greater density in the compressed region, and the particles in a stationary state, but sharp velocity gradient in the region of compression wave. In the earlier chemical characteristics, TNT molecules shed the H, O atoms under the effect of shock compression, and then the residues aggregate to the larger clusters, and this phase associated with translational-vibrational relaxation processes. The rotational mode is subsequently transferred into vibrational modes with a time scale of 0.5 ps. Fragment analysis shows that a large number of C-H, O=N bonds rupture to form the OH, H, HO, N groups and parts of H, O atoms are free in the system. The molar mass of the carbon-containing clusters under the joint actions of compressional wave ahead and rear compression is accumulating gradually from the analysis. Atomic ratio in the carbon-containing clusters tends to balance (O/C=0.680, H/C=0.410, N/C=0.284), but less than the ratio in the initial structure.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know