Ferrous fumarate nanoliposomes: Formulation, characterization, and diffusion profiles
Journal of Applied Pharmaceutical Science, ISSN: 2231-3354, Vol: 14, Issue: 5, Page: 157-165
2024
- 20Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures20
- Readers20
- 20
Article Description
To assess the effect of cholesterol concentration in the preparation of ferrous fumarate nanoliposome toward its physicochemical properties and stability. Nanoliposomes were produced with cholesterol concentrations of 8, 12, and 16 mg using the thin film hydration method. The ultrasonic dispersion method and mini extruders were used to reduce the particle size. The nanoliposome were evaluated for their physical properties, encapsulation efficiency, stability, and transport in the in vitro model of skin absorption. Formula 3 showed the smallest size results, with spherical multilamellar vesicle globules with a relatively dense matrix structure and even distribution between particles with a positive zeta potential value with an encapsulation efficiency percentage value of 61.67% ± 0.50 and a cumulative amount penetrated at the second hour of 442.077 mcg/cm ± 17.270 with a flux value of 14.575 mcg/cm/hour. Formulation 3 with higher cholesterol concentration showed better physical characteristics, encapsulation efficiency, and in vitro skin penetration compared to formulations with lower cholesterol concentration.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know