PlumX Metrics
Embed PlumX Metrics

Effect of gas bubble on acoustic characteristic of sediment: Taking sediment from East China Sea for example

Wuli Xuebao/Acta Physica Sinica, ISSN: 1000-3290, Vol: 64, Issue: 10, Page: 109101-1-109101-6
2015
  • 10
    Citations
  • 0
    Usage
  • 4
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

The effect of gas bubble on acoustic characteristic of sediment is important for ocean science, ocean geology, ocean geophysics, etc. Twenty five samples of ocean bottom sediments are extracted through gravity sampling equipment from the East China Sea and are sealed in PVC pipes for storage in order to study the effect of gas bubble on acoustic characteristic of sediment. In order to obtain the gas content of sediment, in this the paper the Micro-CT scanning technology is introduced into sediment measuring method. The different X ray absorption rates of water, gas and solid particles in sediment samples are obtained through Micro-CT scanning using Siemens' Micro-CT scanner. The gas volume content and water volume content in sediment can be obtained according to CT number distribution. The acoustic measurement is carried out in laboratory using intelligent nonmetal ultrasonic detector and the 40 kHz waves are launched from one side of the sediment sample and obtained from another side. The acoustic attenuation can be obtained according to the amplitudes of launched and received waves and the acoustic velocity can be obtained according to travelling time when acoustic wave goes through the sediment. The attenuation of sediment sample is about a few to twenty and the velocity is about 1100 to 1700 m·s. By mean of analysis of regression, the correlations are obtained among gas content, fluid content, acoustic velocity, attenuation and power function, which better match the measuring data. The result of study indicates that slight augment of gas content can cause sharp decrease of acoustic velocity and rapid increase of acoustic attenuation. The increment and decrement decrease obviously when the gas content exceeds 10%. The result in this paper is useful to explore oil and gas seismic.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know