Influence of thermal treatment on the ionic valence and the magnetic structure of perovskite manganites LaSrMnO
Wuli Xuebao/Acta Physica Sinica, ISSN: 1000-3290, Vol: 65, Issue: 2, Page: 027501-1-027501-9
2016
- 10Citations
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations10
- Citation Indexes10
- 10
- CrossRef8
- Captures5
- Readers5
Article Description
In traditional views, the magnetic ordering of oxides may be explained using magnetic superexchange (SE) or double exchange (DE) interaction models. Both models are based on an assumption that the valences of all oxygen ions be -2. For example, both La and Mn in LaMnO are assumed to be trivalent, in which antiferromagnetic spin structure is explained using the SE interaction between Mn cations mediated by oxygen anions. In LaSrMnO, there exists a part of Mn cations with the content ratio of Mn/Mn being x/(1-x), in which spin structure and electronic transport properties are explained by DE interaction. However, there is a part of monovalent oxygen ions existing in oxides. Cohen [Nature 358 136] has calculated the densities of states for valence electrons in the perovskite oxide BaTiO using density functional theory. Results indicate that the average valence of Ba is +2, being the same as that in the traditional one, but the average valences of Ti and O are +2.89 and -1.63 respectively, agreeing with the results obtained using ionicity investigation [Rev. Mod. Phys. 42 317] and X-ray photoelectron spectra (XPS) analysis, but different from the conventional results +4 and -2. In this paper, three samples with the nominal composition LaSrMnO are prepared by different thermal-treatments. Likewise, there are only Mn and Mn cations, but no Mn cations in LaSrMnO, a result obtained by XPS analysis, and the average valence of Mn in LaSrMnO samples increases with increaseing thermal-treatment. Although the crystal structures of the samples are the same, the magnetic moments per formula are obviously different. This magnetic structure cannot be explained using the conventional SE and DE interaction models. Using the O 2p itinerant electron model for spinel ferrites proposed recently by our group, we can explain this magnetic structure. The variation trend of the average valences of Mn cations calculated using the magnetic moments per formula of the samples at 10 K, is in accordance with the experiment results of XPS. The O 2p itinerant electron model is based on an assumption that there is a part of monovalent oxygen ions in the oxides, which is the fundamental difference from SE and DE interaction models.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84956994909&origin=inward; http://dx.doi.org/10.7498/aps.65.027501; https://wulixb.iphy.ac.cn/article/doi/10.7498/aps.65.027501; https://dx.doi.org/10.7498/aps.65.027501; http://sciencechina.cn/gw.jsp?action=cited_outline.jsp&type=1&id=5630710&internal_id=5630710&from=elsevier
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know